WSL — Docker with GPU enabled (Nvidia)

greg@gregbo:~$ docker run --gpus all nbody -cpu -benchmark> 1 Devices used for simulation
> Simulation with CPU
4096 bodies, total time for 10 iterations: 2779.572 ms
= 0.060 billion interactions per second
= 1.207 single-precision GFLOP/s at 20 flops per interaction
greg@gregbo:~$ docker run --gpus all nbody -gpu -benchmarkGPU Device 0: "Ampere" with compute capability 8.6> Compute 8.6 CUDA device: [NVIDIA GeForce RTX 3080]
69632 bodies, total time for 10 iterations: 57.380 ms
= 845.003 billion interactions per second
= 16900.066 single-precision GFLOP/s at 20 flops per interaction

1. Install or upgrade to Windows 10 Preview, or Win 11 Beta

2. Install Nvidia drivers for CUDA

3. Install WSL 2 and your fave Linux distro

C:\Users\greg>wsl.exe --list -v
* Ubuntu-20.04 Running 2

4. Set up CUDA Toolkit

wget mv /etc/apt/preferences.d/cuda-repository-pin-600wget dpkg -i cuda-repo-wsl-ubuntu-11-4-local_11.4.0-1_amd64.debsudo apt-key add /var/cuda-repo-wsl-ubuntu-11-4-local/7fa2af80.pubsudo apt-get updatesudo apt-get -y install cuda

5. Running CUDA applications

cd /usr/local/cuda-11.4/samples/4_Finance/BlackScholesthen:sudo make BlackScholesthen:./BlackScholes
[./BlackScholes] - Starting...
GPU Device 0: "Ampere" with compute capability 8.6
Initializing data...
...allocating CPU memory for options.
...allocating GPU memory for options.
...generating input data in CPU mem.
...copying input data to GPU mem.
Data init done.
Executing Black-Scholes GPU kernel (512 iterations)...
Options count : 8000000
BlackScholesGPU() time : 0.125945 msec
Effective memory bandwidth: 635.196316 GB/s
Gigaoptions per second : 63.519632
BlackScholes, Throughput = 63.5196 GOptions/s, Time = 0.00013 s, Size = 8000000 options, NumDevsUsed = 1, Workgroup = 128Reading back GPU results...
Checking the results...
...running CPU calculations.
Comparing the results...
L1 norm: 1.741792E-07
Max absolute error: 1.192093E-05
Shutting down...
...releasing GPU memory.
...releasing CPU memory.
Shutdown done.
[BlackScholes] - Test SummaryNOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.Test passed

6. Install Docker

curl | sh
docker run hello-worldHello from Docker!
This message shows that your installation appears to be working correctly.
To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.
To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash
Share images, automate workflows, and more with a free Docker ID:
For more examples and ideas, visit:

7. Nvidia Container Toolkit

distribution=$(. /etc/os-release;echo $ID$VERSION_ID)curl -s -L | sudo apt-key add -curl -s -L$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.listcurl -s -L$distribution/libnvidia-container-experimental.list | sudo tee /etc/apt/sources.list.d/libnvidia-container-experimental.listsudo apt-get updatesudo apt-get install -y nvidia-docker2
sudo service docker stop && sudo service docker start

8. Use your GPU with everything!

docker run --gpus all nbody -gpu -benchmark
greg@gregbo:~$ docker run -it --gpus all -p 8888:8888 tensorflow/tensorflow:latest-gpu-py3-jupyter________                               _______________
___ __/__________________________________ ____/__ /________ __
__ / _ _ \_ __ \_ ___/ __ \_ ___/_ /_ __ /_ __ \_ | /| / /
_ / / __/ / / /(__ )/ /_/ / / _ __/ _ / / /_/ /_ |/ |/ /
/_/ \___//_/ /_//____/ \____//_/ /_/ /_/ \____/____/|__/
WARNING: You are running this container as root, which can cause new files in
mounted volumes to be created as the root user on your host machine.
To avoid this, run the container by specifying your user's userid:$ docker run -u $(id -u):$(id -g) args...[I 01:08:54.379 NotebookApp] Writing notebook server cookie secret to /root/.local/share/jupyter/runtime/notebook_cookie_secret
jupyter_http_over_ws extension initialized. Listening on /http_over_websocket
[I 01:08:54.495 NotebookApp] Serving notebooks from local directory: /tf
[I 01:08:54.495 NotebookApp] The Jupyter Notebook is running at:
[I 01:08:54.495 NotebookApp] http://ad45281857e1:8888/?token=0f5921a7fc66ea3d244bbc962dfe9256da396929d013f940
[I 01:08:54.495 NotebookApp] or
[I 01:08:54.495 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 01:08:54.498 NotebookApp]
To access the notebook, open this file in a browser:
Or copy and paste one of these URLs:

The end



Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store